Slider[Style1]

Style2

Style3[OneLeft]

Style3[OneRight]

Style4

Style5



SCALAR & VECTOR

Physics
Test-1
1. A vector is described by magnitude as well as:  
a)   Angle     
b)   Distance  
c)   Direction     
d)   Height

2. Addition, subtraction and multiplication of scalars is done by:  
a)   Algebraic principles    
b)   Simple arithmetical rules  
c)   Logical methods    
d)   Vector algebra

3. The direction of a vector in a plane is measured with respect to two straight lines which are _______  to each other.  
a)   Parallel     
b)   Perpendicular  
c)   At an angle of 60o    
d)   Equal

4. A unit vector is obtained by dividing the given vector by:  
a)   its magnitude     
b)   its angle  
c)   Another vector    
d)   Ten

5. Unit vector along the three mutually perpendicular axes x, y and z are denoted by:  
a)   a, b, c     
b)   p, q,  r  
c)   i, j, k     
d)   x, y, z

6. Negative of a vector has direction _______ that of the original vector.  
a)   Same as     
b)   Perpendicular to  
c)   Opposite to     
d)   Inclined to

7. There are _______ methods of adding two or more vectors.  
a)   Two      
b)   Three  
c)   Four      
d)   Five

8. The vector obtained by adding two or more vectors is called:  
a)   Product vector    
b)   Sum vector  
c)   Resultant vector    
d)   Final vector

9. Vectors are added according to:  
a)   Left hand rule     
b)   Right hand rule  
c)   Head to tail rule    
d)   None of the above

10. In two-dimensional coordinate system, the components of the origin are taken as:  
a)   (1, 1)     
b)   (1, 0)  
c)   (0, 1)     
d)   (0, 0)

11. The resultant of two or more vectors is obtained by:  
a)   Joining the tail of the first vector with the head of the last vector.  
b)   Joining the head of the first vector with the tail of the last vector.  
c)   Joining the tail of the last vector with the head of the first vector.  
d)   Joining the head of the last vector with the tail of the first vector.

12. The position vector of a point p is a vector that represents its position with respect to:  
a)   Another vector    
b)   Center of the earth  
c)   Any point in space    
d)   Origin of the coordinate system

13. To subtract a given vector from another, its _______ vector is added to the other one.  
a)   Double     
b)   Half  
c)   Negative     
d)   Positive

14. If a vector is denoted by A then its x-components can be 
written as:  
a)   A sinθi       
b)   A sinθj    
c)   A cos θi       
d)   A cos θj

15. The direction of a vector  can be fond by the formula:  
a)    Î¸= tan-1 (Fy/Fx)    
b)   Î¸ = sin-1 (Fx/Fy)  
c)   Î¸ = sin-1 (Fy/Fx)    
d)   Î¸ = tan-1 (Fx/Fy)

16.The sum of two vectors equal in magnitude but opposite in direction is  
a)   Less than the individual vectors   
b)   Greater than the individual vectors  
c)   Equal to the individual vector   
d)   Zero

17. The sine of an angle is positive in _______ quadrants.  
a)   First and Second    
b)   Second and fourth 
c)   First and third     
d)   Third and fourth

18. The cosine of an angle is negative in _______ quadrants.  
a)   Second and fourth    
b)   Second and third  
c)   First and third     
d)   None of the above

19. The tangent of an angle is positive in _______ quadrants.  
a)   First and last     
b)   First only  
c)   Second and fourth    
d)   First and third

20. If the x-component of the resultant of two vectors is 
positive and its y-component is negative, the  resultant 
subtends an angle of _______ on x-axes.  
a)   360o -  Î¸     
b)   180o θ  
c)   180o + Î¸     
d)   Î¸

21. Scalar product is obtained when:  
a)   A scalar is multiplied by a scalar  
b)   A scalar is multiplied by vector  
c)   Two vectors are multiplied to give a scalar 
d)   Sum of two scalars is taken

22. The scalar product of two vectors A and B is written as:  
a)   A x B   
b)   A. B  
c)   AB(vector)     
d)   AB(magnitude)

23. The scalar product of two vectors F and V with magnitude of 
F and V is given by:  
a)   FV sinθ       
b)   FV tanθ    
c)   F/V cosθ       
d)   FV cosθ  

24.  The magnitude of product vector Ci.e. A x B=C, is equal to 
the:  
a)   Sum of the adjacent sides   
b)   Area of the parallelogram  
c)   Product of the four sides   
d)   Parameter of the parallelogram

25. Work is defined as:  
a)   Scalar product of force and displacement  
b)   Vector product of force and displacement  
c)   Scalar product of force and velocity  
d)   Vector product of force and velocity

26. The scalar product of a vector A is given by:  
a)   A cosθ       
b)   A sinθ    
c)   A tanθ       
d)   None of the above

27. If two vectors are perpendicular to each other, their dot 
product is:  
a)   Product of their magnitude   
b)   Product of their x-components  
c)   Zero      
d)   One

28. If  i, j,  k are unit vectors along x, y and z-axes then i.j = j.k =
 k.i= ?  
a)   1      
b)   -1  
c)   -1/2        
d)   0

29. i.i = j.j = k.k =  _______  
a)   0      
b)   1  
c)   -1      
d)   1/2

30. If  dot product of two vectors which are not perpendicular 
to each other is zero, then either of the  vectors is:  
a)   A unit vector     
b)   Opposite to the other  
c)   A null vector     
d)   Position vector

32. In the vector product of two vectors A & B the direction of the product vector is:  
a)   Perpendicular to A    
b)   Parallel to B   
c)   Perpendicular to B    
d)   Perpendicular to the plane joining both  A&B

33.The position vector of a point p is a vector that represents its position with respect to  

a)   Another vector    
b)   Centre of the earth  
c)   Any point in space    
d)   Origin of the coordinate system



34. The magnitude of vector product of two vectors A & B is 
given by:  
a)   AB sinθ      
b)   AB  
c)   AB cosθ      
d)   AB tanθ 

35. If  i, j,  k are unit vectors along x, y and z-axes then k x j = _______  
a)   i    
b)   j  
c)  -k      
d)  -i

36. ix i = jxj = kx k =  _______  
a)   0      
b)   1  
c)   -1      
d)   1/2

37. k x i =  _______  
a)   j      
b)   -j  
c)   k      
d)   -k

38. The torque is given by the formula:  
a)   T = r . F     
b)   T =r x F  
c)   T =F x r     
d)   T =-F x r

39. The force on a particle with charge q and velocity in a magnet-
ic field B is given by:  
a)    q (V x B)     
 b)  -q (V x B)  
 c)   1/q (V x B)     
 d)   1/q (Bx V)

40. The scalar quantities are described by their magnitude and _______  
a)   Direction     
b)   Proper unit  
c)   With graph     
d)   None of these

41. The vector quantities are described by their magnitude as 
well as _______  
a)   Distance     
b)   Direction  
c)   Speed     
d)   Acceleration

42.The vector quantity which is defined as the displacement 

of the particle during a time interval  divided by that time 
interval is called  
a)   Speed     
b)   Average speed  
c)   Average velocity    
d)   None of these

43. Speed is a _______ quantity.  
a)   Vector     
b)   Scalar  
c)   Negative     
d)   Null

44. A vector B in 4th quadrant than:   
a)   Its x-component is -ve and its y-component is +ve  
b)   Its x-component is +ve and its y-component is +ve  
c)   Its x-component is +ve and its y-component is -ve  
d)   Its x-component is -ve and its y-component is -ve

45.The components of a vector behave like:  
a)   Vector quantities    
b)   Scalar quantities  
c)   Magnitudes     
d)   Directions

46.If a vector A lies in xy-plane and it makes an angle ‘θ’ with 
the side of y-axis. Then its y-component  is:  
a)   Ay = A Cosθ    
b)   Ay = A Secθ  
c)   Ay = A Sinθ     
d)   Ay = A Tanθ

47. The module is another name of _______ of the vector.  
a)   Magnitude     
b)   Null   
c)   Zero      
d)   None of these

48. The magnitude of a vector C is represented as _______.  
a)   lCl      
b)   C  
c)   C/lCl      
d)   None of these

49. The vector whose magnitude is equal to one is called _______.  
a)   Unit vector     
b)   Null vector  
c)   Zero vector     
d)   Positive vector

50. The unit vector of  z is represented as:  
a)   lzl      
b)   lzl/z  
c)   Z      
d)   None of these

51. The formula of unit vector is defined as_______.  
a)   Dividing the vector by its magnitude  
b)   Dividing the magnitude by its vector  
c)   Draw a cap on it    
d)   None of these

52. Along the three mutually perpendicular axes x, y and z, 
the unit vectors are denoted by:  
a)   i, j,  k     
b)   -i, -j,  k  
c)   i, j, k     
d)   None of these

53. In negative of a vector, a vector has same magnitude 
but _______ direction.  
a)   Positive     
b)   Negative  
c)   Opposite     
d)   None of these

54. The negative of vector C is represented as:  
a)   -C      
b)   -lCl  
c)   lCl/3      
d)   None of these

55. The null-vector has _______ magnitude.  
a)   Four      
b)   Five  
c)   Zero      
d)   Six

56. If we multiply vector A by 14, then we can write it as:  
a)   14 lAl     
b)   lAl/14  
c)   14/lAl      
d)   None of these

57.The process by which a vector can be reconstituted from its components is known as:  
a)   Principle of parallelogram   
b)   Division of vectors  
c)   Composition of vectors   
d)   Factorization of vectors

58. If we multiply vector A by -1, then its direction changes by _______.  
a)   90o      
b)   160o  
c)   270o      
d)   180o

59.  A. B = B. A = _______.  
a)   AB Cosθ         
b)   AB Sinθ      
c)   AB      
d)   AB Tanθ    

60. Symbol “E” is known as _______.  
a)   Pi      
b)   Resultant  
c)   Power     
d)   Summation

CORRECT ANSWER



Question
Answers
Question
Answers
Question
Answers
1.
C
11
A
21
C
2.
A
12
D
22
B
3
B
13
C
23
D
4
A
14
C
24
B
5
C
15
A
25
A
6
C
16
D
26
D
7
A
17
A
27
C
8
C
18
B
28
D
9
C
19
D
29
B
10
D
20
A
30
C
Question
Answers
Question
Answers
Question
Answers
31.
D
41
51
A
32.
A
42
52
B
33
43
 B
53
C
34
A
44
 C
54
A
35
D
45

55
C
36
A
46
C
56
D
37
A
47
A
57
D
38
C
48
B
58
D
39
A
49
A
59
A
40
B
50
C
60
D

About Unknown

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.
«
Next
Newer Post
»
Previous
Older Post

1 comments:

  1. Thank u so much this is so help full...Cn i get some of more chapters like these?

    ReplyDelete


Top